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Abstract

This paper presents a model-based method for the system identification of a rectangular enclosure with an unknown

number of air leakages subjected to uniform external noise, according to the probabilistic approach. The method aims to

identify the number and corresponding locations and sizes of air leakages utilizing a set of measured, interior, sound

pressure data in the frequency domain.

System identification of an enclosure with an unknown number of air leakages is not trivial. Different classes of acoustic

models are required to simulate an enclosure with different numbers of leakages. By following the traditional system of

identification techniques, the ‘‘optimal’’ class of models is selected by minimizing the discrepancy between the measured

and modeled interior sound pressure. By doing this, the most complicated model class (that is, the one with the highest

number of uncertain parameters) will always be selected. Therefore, the traditional system identification techniques found

in the literature to date cannot be employed to solve this problem.

Our proposed system identification methodology relies on the Bayesian information criterion (BIC) to identify

accurately the number of leakages in an enclosure. Unlike all deterministic system identification approaches, the proposed

methodology aims to calculate the posterior (updated) probability density function (PDF) of leakage locations and sizes.

Therefore, the uncertainties introduced by measurement noise and modeling error can be explicitly addressed. The

coefficient of variable (COV) of uncertain parameters, which can be easily calculated from the PDF, provides valuable

information about the reliability of the identification results.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The modeling of an acoustic enclosure is an important issue, and many researchers [1–5] have developed
different theoretical methods to address this problem. Oldham and Hillarby [4,6] and Pan et al. [5] carried out
both theoretical and experimental studies of the modeling of acoustic enclosures. In their findings, they
reported that some assigned model parameters were not accurate due to the uncertainties associated with the
boundary conditions, material properties and damping of the system. System identification allows researchers
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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and engineers to increase the accuracy of model parameters and to obtain a representative model, which can
then be employed for predictions and controls. McKelvey et al. [7] proposed a subspace system identification
method to identify the acoustic model of a regular duct using frequency response data. Henry and Clark [8] set
up the transfer functions for particular inputs and outputs of an acoustic model, which was then used in the
design of a control system based on system identification. Fang et al. [9] presented a paper on the modeling,
system identification and control of acoustic-structure interaction dynamics of enclosure systems. The transfer
function and state-space models were obtained from experimental data using system identification techniques.
The identified model was then used for controller design. Lee et al. [10] proposed a probabilistic approach to
identify the uncertain parameters of the acoustic model of a room utilizing the measured interior sound
pressure. The identified acoustic model was then used to reconstruct the interior sound pressure distribution.
Lardies [11] utilized the wavelet transform of free responses for the identification of eigen frequencies of
damped signals. The method has been demonstrated using numerical and experimental results from an
acoustic enclosure.

The main objective of this paper is to develop a probabilistic method for the system identification of an
enclosure with an unknown number of leakages, utilizing measured interior sound pressure introduced by
uniform external noise. There are many system identification methods in the existing literature. The basic idea
of most of them is to minimize the discrepancy between the measured and calculated, or predicted, model
outputs. It must be pointed out that the idea of minimizing the discrepancy is not applicable in the system
identification of enclosures with an unknown number of leakages. This is because different classes of models
are needed to represent enclosures with different numbers of leakages. The model class of an enclosure with
more leakages consists of more model parameters, and therefore, is more complex than the model class of an
enclosure with fewer leakages. As a more complex model class can always better accommodate the measured
interior sound pressure than a less complex one, the most complex model class will always be selected when
following this approach. To overcome this difficulty, our proposed methodology relies on the Bayesian
information criterion (BIC) by identifying the ‘‘optimal’’ model class for a given set of measured interior
sound pressures, with the objective of determining the number of air leakages.

The proposed system identification methodology not only identifies the model parameters, but also the
associated uncertainties. This can be achieved by calculating the posterior (updated) probability density
function (PDF) of the leakage locations and their corresponding sizes. With the calculated PDF, the
coefficient of variation (COV) of the identified parameters can be easily calculated. The COV provides
valuable information on the reliability of the system identification results. This information cannot be
obtained by any deterministic system identification methods.

A series of comprehensive case studies were carried out to verify and demonstrate the proposed
methodology. The results are very encouraging. By using our proposed methodology, we studied the effects of
measurement noise, modeling error, the number of leakages and the number of measurement stations on the
results of system identification through numerical simulation.

2. Proposed methodology

The proposed methodology is directed at the system identification of a rectangular enclosure with an
unknown number of square leakages, as shown in Fig. 1, in which Lx, Ly and Lz are the dimensions of the
enclosure, and Nl is the number of leakages. By assuming that all leakages are square and on the side wall,
with x ¼ Lx (see Fig. 1), each leakage can be represented by three model parameters (that is, the y- and z-
coordinates of the lower left corner of the leakage, and its size).

The basic strategy of the proposed methodology is to adopt different classes of acoustic models to represent
a rectangular enclosure with different numbers of leakages. The identification of the number of leakages is
then equivalent to the selection of the ‘‘optimal’’ class of models for a given set of measured interior sound
pressure. It must be pointed out that a model class with more model parameters can better accommodate the
measurement when compared to a model class with fewer model parameters. In the presence of measurement
noise, the optimal model in the model class, say M3, can fit the measurement better than that in M2, as the
three additional parameters can compensate for the effect of measurement noise to some extent. The selection
of the ‘‘optimal’’ model class, based solely on the fit between the modeled and the measured interior sound
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Fig. 1. The rectangular enclosure acoustic model with different number of air leakages.
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pressure, is very misleading, as the most complex model class will always be selected. Our proposed
methodology uses the probabilistic approach to address this problem. By following the Bayesian statistical
framework [12], the conditional probability of a model class for a given set of data D can be approximated
asymptotically. Under the assumption of a large number of measured data points, this probability can be
further simplified as the BIC [13]. The formulation of the BIC for a class of models is presented in Section 2.2.

To quantify the uncertainties associated with the identification results, the posterior PDF of the set of
uncertain model parameters (e.g., leakage locations and sizes) are calculated by again employing the Bayesian
statistical framework [12], which is briefly reviewed in Section 2.3. The modeling of the rectangular enclosure
with a given number of leakages is first given in the following section.

2.1. Modeling of an enclosure with leakages

A rectangular enclosure is shown in Fig. 1. The dimensions of the enclosure are Lx � Ly � Lz. It is assumed
that the enclosure is subject to a steady-state uniform distributed sound pressure. The complex acoustic
pressure f(r) in the enclosure can be described by the frequency domain acoustic wave equation [5]

ðr2 þ k̄
2
Þf ðrÞ ¼ �jr0oqðrÞ, (1)

where k̄ ¼ o=c is the wavenumber; c is the sound speed; r0 is the air density; o is the angular frequency of the
sound waves; r is the position vector; and q(r) is the strength of the sound source describing the volume
velocity per unit volume.

Based on the model expansion approach [5], the acoustic pressure field can be described by a trial solution
f ðNf ÞðrÞ, and the residual of Eq. (1) is defined as

Rðf ðNf ÞðrÞÞ ¼ ðr2 þ k̄
2
Þf ðNf ÞðrÞ þ jr0oqðrÞ. (2)

The trial solution f ðNf ÞðrÞ is assumed to be

f ðNf ÞðrÞ ¼
XNf

J¼1

F JfJ ðrÞ, (3)

where Nf are the number of acoustic modes considered; FJ is the pressure amplitude of the J-th acoustic mode;
fJðrÞ are the shape functions that satisfy the geometrical boundary conditions of the sound field and are all
orthogonal to the residual, that is,

R
V
fJðrÞRðf

ðNf ÞðrÞÞdV ¼ 0. The following equation can be thus derived for
each fJðrÞ: Z

V

fJ ðrÞr
2f ðNf ÞðrÞdV þ k̄

2
Z

V

fJðrÞf
ðNf ÞðrÞdV ¼ �jr0o

Z
V

qðrÞfJ ðrÞ dV . (4)

The first term on the left-hand side of Eq. (4) can be expressed asZ
V

fJðrÞr
2f ðNf ÞðrÞdV ¼

Z
V

f ðNf ÞðrÞr2fJðrÞdV þ

Z
S

qf ðNf ÞðrÞ

qn
fJðrÞdS �

Z
S

qfJðrÞ

qn
f ðNf ÞdS. (5)
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Assuming the rectangular enclosures are constructed by rigid walls, the shape functions are

fJ ðrÞ ¼ flmnðrÞ ¼ cos
lpx

Lx

cos
mpy

Ly

cos
npz

Lz

, (6)

and the boundary conditions are

qf
qx

����
x¼0

¼ 0;
qf
qx

����
x¼Lx

¼ vðy; zÞ;
qf
qy

����
y¼0

¼
qf
qy

����
y¼Ly

¼ 0;
qf
qz

����
z¼0

¼
qf
qz

����
z¼Lz

¼ 0. (7)

where l, m and n are integers
Using Eqs. (4) and (5), the generalized coordinates FJ are

ðk̄
2
� jzk̄k̄J � k̄

2

JÞLJF J ¼ �

Z
S

fJ

qf ðNf ÞðrÞ

qn
dS � jr0o

Z
V

fJqðrÞdV (8)

for J ¼ 1; 2; . . . ;Nf , where z is the damping ratio; LJ ¼
R

V
f2

JðrÞdV ; and the second term of the right-hand
side is related to the point sound source within the enclosure. In Fig. 1, it is assumed that Nl ðl ¼

1; . . . ; i; . . .NlÞ air leakages are located at xi ¼ Lx, yipypyi þ L0yi
and zipzpzi þ L0zi

. L0yi
and L0zi

are the
width and length of the i-th air leakage. The first term of the right-hand side in Eq. (8) represents the
contribution from non-rigid boundary conditions, and it can be expressed as

qf ðNf ÞðrÞ

qn
¼ �jr0ovðy; zÞ. (9)

k̄J is the wavenumber of the J-th rigid mode, and it is

k̄J ¼ k̄lmn ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

Lx

� �2

þ
m

Ly

� �2

þ
n

Lz

� �2
s

. (10)

The velocity profiles at the air leakages are assumed to be double sine function as follows.

vðy; zÞ ¼
joBi sin

pðy� yiÞ

L0y1

 !
sin

pðz� ziÞ

L0z1

 !
for the i-th air leakage

0 for the rigid wall

8>><
>>: , (11)

where Bi are the air particle displacement amplitudes at the i-th air leakage. Thus, Eq. (9) becomesZ
S

fJ

qf ðNf ÞðrÞ

qn
dS ¼ r0o

2
XNl

i¼1

BiaiJ , (12)

where aiJ are the modal coupling coefficients of the J-th acoustic mode, which depends on the location and size
of the i-th air leakage, as given below.

aiJ ¼

Z
Si

fJðrÞ sin
pðy� yiÞ

L0yi

 !
sin

pðz� ziÞ

L0zi

 !
dS, (13)

where Si ¼ L0yi
L0zi

are the i-th leakage area.
The displacement equation of movement at the i-th air leakage in the frequency domain is

�mo2w̄i þ joQiw̄i ¼ f̄ i � f e, (14)

where m ¼ r0h are the equivalent air mass at the leakages; h is the wall thickness; Qi ¼ r0ck̄
2
Si=2p is the

equivalent sound radiation impedance at the leakages [14]; w̄i is the average air particle displacement; f̄ i and fe

are the interior sound pressure at the i-th air leakage and external sound pressure acting on the air piston,
respectively. They are given as

w̄i ¼

R
Si

wðy; zÞdS

Si

¼
Bi

R
Si
sinðpðy� yiÞ=L0yi

Þ sinðpðz� ziÞ=L0zi
ÞdS

Si

¼ Bi

2

p

� �2

(15)
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and

f̄ i ¼

R
Si

PNf

I¼1F IfI ðrÞdS

Si

¼
XNf

I¼1

FIbiI , (16)

where biI are the coefficients in terms of the velocity mode of the air piston and given as

biI ¼

R
Si
fI ðrÞdS

Si

. (17)

By using Eqs. (12), (14), (15) and (16); and then substituting the resulting equations into Eq. (8), the
displacement amplitude of i-th air leakage Bi can be obtained, and the pressure amplitude of the J-th acoustic
mode FJ ðJ ¼ 1; 2; . . . ;Nf Þ can be calculated from the following equation (see Appendix A).

ðk̄
2
� jzk̄k̄J � k̄

2

JÞLJFJ þ
r0o

2p2

4

XNl

i¼1

aiJ

PNf

I¼1FIbiI

�mo2 þ joQi

 !
¼

r0o
2p2

4

XNl

i¼1

aiJ f e

�mo2 þ joQi

 !
, (18)

The sound pressure in the frequency domain within the enclosure can then be obtained by substituting FJ into
Eq. (3).

In this study, all air leakages are assumed to be square, so the variable representing the size of the i-th air
leakage becomes L0i ¼ L0yi

¼ L0zi
. In the proposed methodology, the air leakage locations (yi and zi) and

the corresponding sizes (L0i) are considered to be uncertain parameters in the identification process. As the
damping ratio is usually uncertain and difficult to identify when compared to other model parameters, the
damping ratio (z) is also treated as an uncertain parameter in the identification process. The uncertain
parameter vector for a rectangular enclosure with k square air leakages is thus

hk ¼ fz; y1; y2; . . . ; yk; z1; z2; . . . ; zk;L
0
1;L
0
2; . . . ;L

0
kg

T. (19)

The total number of uncertain parameters is Nk ¼ 3k þ 1.

2.2. Identification of the number of leakages and the corresponding locations and sizes

We now consider the general case of an enclosure with k air leakages on the side wall, with x ¼ Lx (see
Fig. 1). The model class to be considered is Mk, for k ¼ 1; 2; . . . ;NM , where NM is the maximum number of air
leakages to be considered in the system identification process. From Eq. (19), hk 2 SðhkÞ � RNk is the vector of
uncertain model parameters, such as the leakage locations and sizes, to be identified in accordance with the
Bayesian statistical framework, where Nk is the dimension of hk. By relying on Bayes’ theorem, the posterior
(or updated) PDF pðhkjD;MkÞ for a given set of measurements D and model classes Mk, can be expressed as

pðhkjD;MkÞ ¼ ckpðhkjMkÞpðDjhk;MkÞ, (20)

where ck is a normalizing constant such that the integration of pðhkjD;MkÞ over the domain is equal to unity, and
pðhkjMkÞ ¼ pðhkÞ is the prior PDF of the set of uncertain model parameters hk, which allows the judgment about
the relative plausibility of the values of the uncertain parameters to be incorporated. A uniform prior PDF, such
that the posterior PDF depends solely on the data, is employed in this study; pðDjhk;MkÞ is the likelihood of the
data given hk of model class Mk. Under the assumption of independent Gaussian prediction errors, it is given by

pðDjhk;MkÞ ¼
1ffiffiffiffiffiffi

2p
p

sk

� �ND
exp �

ND

2s2k
JðhkjD;MkÞ

� 	
, (21)

where sk is the optimal standard deviation of the target error; ND ¼ NNO is the total number of measured data
points; N is the total number of frequency steps considered in the system identification process; and NO is the
number of measurement stations. The function JðhkjD;MkÞ in Eq. (21) is the contribution of the measured data,
and is given [12] by

JðhkjD;MkÞ ¼
1

ND

XNO

n¼1

kf̂
ðNf Þ
ðrnÞ � f ðNf Þðrn; hk;MkÞk

2, (22)
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where f ðNf Þðrn; hk;MkÞ is the vector of the calculated interior sound pressure at the n-th measurement station for a

given model hk in Mk; rn is the position vector of the n-th measurement station; f̂
ðNf Þ
ðrnÞ is the vector of measured

interior sound pressure at the n-th measurement station, both f ðNf Þðrn; hk;MkÞ and f̂
ðNf Þ
ðrnÞ are of dimensions N

by 1; and J.J denotes the Euclidean norm of a vector. A smaller value of JðhkjD;MkÞ in Eq. (22) implies a better fit
to the measurement by the corresponding model hk. The ‘‘optimal’’ (or ‘‘best’’) model ĥk in a given model class Mk

for a given set of data D, can be identified by maximizing the posterior PDF pðhkjD;MkÞ, as in Eq. (20). When a
uniform prior PDF (non-informative prior) is chosen in Eq. (20), this is equivalent to maximizing the likelihood of
pðDjhk;MkÞ in Eq. (21) or minimizing the JðhkjD;MkÞ function in Eq. (22).

To select the ‘‘optimal’’ class of models from the NM model classes, the proposed methodology allows the
calculation of the probability of the model class conditional on a set of measured interior sound pressure D.
Based on the Bayes’ theorem,

PðMkjDÞ ¼
PðMK ÞPðDjMkÞPNm

i¼1PðMiÞPðDjMiÞ
for k ¼ 1; . . . ;NM , (23)

where 1=
PNm

i¼1PðMiÞPðDjMiÞ is a normalizing constant. As the number of leakages is not known, the prior
probability PðMkÞ is taken as 1/NM. The most important term in Eq. (23) is the probability of getting the set of
measurement D conditional on the class of models Mk. This conditional probability is called the evidence of
the model class Mk. For a globally identifiable case [12,15], the evidence of Mk can be calculated based on the
asymptotic approximation [16–18]

PðDjMkÞ � pðDjĥk;MkÞð2pÞ
Nk=2pðĥkjMkÞjHkðĥkÞj

�ð1=2Þ for k ¼ 1; . . . ;NM (24)

where ĥk denotes the optimal model in the model class Mk. Nk is the number of uncertain model parameters in

ĥk, and HkðĥkÞ is the Hessian of the function gðhkÞ evaluated at the optimal model ĥk, where gðhkÞ is given by

gðhkÞ ¼ � ln½pðhkjMkÞpðDjhk;MkÞ�. (25)

When the value of ND increases, the determinant of the Hessian HkðĥkÞ can be approximated as

jHkðĥkÞj � NNk

D jQðĥkÞj, (26)

where QðĥkÞ is the Fisher information matrix [19]. By substituting Eq. (26) into Eq. (24), the logarithm of the
evidence of Mk can be expressed as

lnPðDjMkÞ � ln pðDjĥk;MkÞ þ
Nk

2
ðln 2p� lnNDÞ þ ln pðĥkjMkÞ �

1

2
ln jQkðĥkÞj. (27)

Asymptotically, the prior distribution of uncertain parameters pðĥkjMkÞ can be approximated by a
multivariate Gaussian distribution with means ĥk and covariance Q�1ðĥkÞ. As a result, the BIC [13] of the
model class Mk can be obtained from Eq. (27).

BICk ¼ lnPðDjMkÞ � ln pðDjĥk;MkÞ �
Nk

2
lnND. (28)

The BICk in Eq. (28) consists of two factors. The first factor, ln pðDjĥk;MkÞ, is the logarithm of the
likelihood. This will be larger for model classes that correspond more closely with the interior sound
pressure D. This favours model classes with more parameters (model classes with higher complexity). The
second factor ðNk=2Þ ln ND, is a penalty for the complexity of the model class. The penalty increases
with the number of data points ND and the number of uncertain parameters Nk in the class of models. Thus, it
provides a penalty against parameterization. The combining effect of these two elements makes it
possible to select a model class that, on one hand, is complex enough to accurately accommodate the
measurement D, and, on the other hand, is simple enough to prevent excessive ‘‘fitting’’ of the noise portion of
the measured data.

A computationally efficient algorithm is developed for identifying the number of leakages in the enclosure
without assuming the value of NM. The algorithm consists of a series of iteration steps, as shown in Fig. 2, and
begins by initializing the iteration counter k, which represents the number of leakages at the current iteration
step. When k ¼ 0, the algorithm checks whether the measured sound pressure data f̂ ðrnÞ, for n ¼ 1 to NO,
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Consider model class Mk where k = 0

Sound pressure f (Nf ) ≠ 0ˆ

Sound pressure f (Nf) = 0ˆ

Calculate the BICk of the model class with k leakages 

Set k = 1

Calculate the BICk+1 of the model class with k+1 leakages

Which of the two calculated BIC is larger? 

k = k+ 1

Number of leakages = k

k + 1

k

Fig. 2. The proposed algorithm for identifying the number of air leakages.
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in Eq. (22) is a null vector. When there is no leakage, the measured interior sound pressure in all stations must
be zero. If this is the case, then the algorithm stops, as there is no leakage. Otherwise, the algorithm will
increase the k counter by 1 (k ¼ 1) and calculate the values of BICk and BICk+1. If the value of BICk is larger
than that of BICk+1, then the algorithm stops, and the number of leakages is equal to the value of the counter
k. Otherwise, the algorithm will start the next iteration by increasing the counter k by 1 (k ¼ k+1), then it will
compute and compare the values of BICk and BICk+1 again. The iteration will continue until the value of
BICk is larger than that of BICk+1 (see Fig. 2).

2.3. Calculation of the posterior probability density function of the model parameters

After identifying the number of air leakages, for example Nl, the next step of the proposed methodology is
to calculate the posterior PDF pðhNl

jD;MNl
Þ of the set of uncertain parameters hNl

in the model class MNl
for

a given set of data D. For identifiable cases, the posterior PDF pðhNl
jD;MNl

Þ can be approximated as a
weighted sum of Gaussian distributions centered at the Nq optimal models [12]:

PðhNl
jD;MNl

Þ �
XNq

q¼1

wqNðĥ
ðqÞ

Nl
;A�1N ðĥ

ðqÞ

Nl
ÞÞ, (29)

where Nðl;RÞ denotes a multivariate Gaussian distribution with mean l and covariance matrix R. The

covariance matrix A�1N ðĥ
ðqÞ

Nl
Þ is the Hessian of the function NK ln JðhNl

jD;MNl
Þ, where NK ¼ ðNNO � 1Þ=2 is

evaluated at ĥ
qð Þ

Nl
, where JðhNl

jD;MNl
Þ is given by Eq. (22) by replacing the variable k with the identified

leakage number Nl. The weighting coefficients in Eq. (29) are given by

wq ¼
w0qPNq

q¼1w0q

where w0q ¼ pðĥ
ðqÞ

Nl
ÞjAN ðĥ

ðqÞ

Nl
Þj�ð1=2Þ, (30)

and where pðĥ
ðqÞ

Nl
Þ is the prior PDF pðhNl

jMNl
Þ of the set of uncertain model parameters hNl

evaluated at ĥ
ðqÞ

Nl
.

Instead of pinpointing the leakage locations and sizes, the proposed methodology aims to calculate the
posterior PDF of the parameters hNl

. As a result, the level of confidence in the results of the identification can
be quantified.

3. Numerical case study

A rectangular enclosure with dimensions Lx ¼ 6m, Ly ¼ 4m and Lz ¼ 3m, subjected to a uniform random
sound pressure, is used as a verification example (see Fig. 1), and the dimensions and material properties of the
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enclosure are summarized in Table 1. Three interior sound pressure measurement stations are located at
(x ¼ 1.05m, y ¼ 2.15m, z ¼ 1.15m), (x ¼ 3.15m, y ¼ 3.30m, z ¼ 2.15m) and (x ¼ 4.45m, y ¼ 0.95m,
z ¼ 0.75m). One external sound measurement is used for the identification process. For cases that consider the
effect of modeling error, the measured and modeled interior sound pressures are simulated by the lowest 20
and 18 acoustic modes (NJ), respectively. The frequency range of the external sound pressure is from 20 to
120Hz with 1Hz frequency step. Measurement noise is considered by adding a 5% white noise to the
calculated interior sound pressures.

In this paper, six cases (Cases A–F) are considered to verify and demonstrate the proposed system
identification methodology. A summary of all cases is given in Table 2. Case A considers a single air leakage
(at y1 ¼ 0:92m and z1 ¼ 1:65m with size L01 ¼ 0:3m) without considering the effect of modeling error. Both of
the measured and modeled interior sound pressures are generated by using the lowest 20 acoustic modes. Case
B is the same as Case A, except that it considers the effect of modeling error. Case C is the same as Case B,
except that the measurement noise in Case C is 15% (10% higher than that in Case B). Cases A and B can thus
be used to study the effect of modeling error, whereas Cases B and C can be used to study the effect of
measurement noise. Cases D and E consider two and three air leakages, respectively. The locations and sizes of
these are (y1 ¼ 2.42m, z1 ¼ 0.75m, L01 ¼ 0:25m) and (y2 ¼ 0.92m, z2 ¼ 1.65m, L02 ¼ 0:3m) for Case D and
(y1 ¼ 2.42m, z1 ¼ 0.75m, L01 ¼ 0:25m), (y2 ¼ 0.92m, z2 ¼ 1.65m, L01 ¼ 0:3m) and (y3 ¼ 2.55m, z3 ¼ 1.95m,
Table 1

Dimensional and material properties of the enclosure..

Property Value

Thickness of wall (h) 0.1m

Damping ratio of wall (z) 0.01

Sound speed (C) 343m/s

Air density (r0) 1.21Kg/m3

Table 2

Summary of all cases in the numerical case studies..

Case No. of

leakages

Leakage locations and sizes (m) No. of measurement

stations

Noise (%) Modelling

error

y Location z Location Size

A 1 y1 ¼ 0.92 z1 ¼ 1.65 L01 ¼ 0:30 3 5 N

B 1 y1 ¼ 0.92 z1 ¼ 1.65 L01 ¼ 0:30 3 5 Y

C 1 y1 ¼ 0.92 z1 ¼ 1.65 L01 ¼ 0:30 3 15 Y

D 2 y1 ¼ 2.42 z1 ¼ 0.75 L01 ¼ 0:25 3 5 Y

y2 ¼ 0.92 z2 ¼ 1.65 L02 ¼ 0:30

E 3 y1 ¼ 2.42 z1 ¼ 0.75 L01 ¼ 0:25 3 5 Y

y2 ¼ 0.92 z2 ¼ 1.65 L02 ¼ 0:30
y3 ¼ 2.55 z3 ¼ 1.95 L03 ¼ 0:20

F 3 y1 ¼ 2.42 z1 ¼ 0.75 L01 ¼ 0:25 2 5 Y

y2 ¼ 0.92 z2 ¼ 1.65 L02 ¼ 0:30
y3 ¼ 2.55 z3 ¼ 1.95 L03 ¼ 0:20
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L03 ¼ 0:2m) for Case E. Cases B, D and E are employed to demonstrate the proposed methodology in
identifying the enclosure with different numbers of air leakages. Case F is the same as Case E, except that the
former uses only two measurement stations, which are located at (x ¼ 3.15m, y ¼ 3.32m, z ¼ 2.15m) and
(x ¼ 4.45m, y ¼ 0.95m, z ¼ 0.75m). The effect of the number of measurement stations can thus be studied by
comparing the results in Cases E and F.
3.1. Effects of the modeling error

As the modeling error is only introduced in Case B, its effects on the results of system identification can be
studied by comparing the results from Cases A and B.

The proposed methodology begins by checking the measured interior sound pressures. If the measured
interior sound pressure vector is not null, then there must be at least one leakage in the enclosure. The next
step is to calculate the relative BICk (the values of BIC are normalized such that the maximum is equal to
unity for easy comparison) of the model classes M1 and M2, which are the model classes of enclosures with one
and two air leakages, respectively. The calculated results are summarized in Tables 3 and 4. It is clear from the
tables that the relative BIC1 (1 for both Cases A and B) is larger than the relative BIC2 (3.07� 10�4 for Case
A and 9.03� 10�4 for Case B), and therefore, it can be concluded that there is only one air leakage in the
enclosure. Use of the proposed methodology allows for the successful identification of the true number of air
leakages (Nl ¼ 1) in both cases. Tables 3 and 4 also show the logarithms of the likelihood factor and penalty.
The results show that the logarithm of likelihood and penalty are larger for more complex model classes. If the
optimal model class is selected based solely on the logarithm of the likelihood factor, the most complex model
class will always be chosen. It is shown in the table that the likelihood factor of the optimal model class in Case
A is larger than that of the optimal model class in Case B. This is because the match between the modeled and
measured interior sound pressure in Case B is affected by the modeling error.

The optimal model ĥ1 and the updated PDF of the set of model parameters h1 can then be calculated using
the proposed methodology. The normalized marginal PDF of the air leakage location (y1 and z1) for both
Cases A and B are plotted in Figs. 3 and 4, respectively. First of all, there is only one peak in both figures,
which shows that there is only one optimal model within the domain of interest. Second, the PDF value in
both figures drops significantly when one moves away from the optimal model in any direction. This is a
typical characteristic of an identifiable case [20–23]. Both figures are in the same scale for comparison. It is
clear that the drop in PDF value in Case A (Fig. 3) occurs much more quickly than that in Case B (Fig. 4).
This is due to the fact that the uncertainties associated with the identification results in Case B (with modeling
error) are higher than those associated with the identification results in Case A (without the modeling error).
Figs. 5–10 show the marginal cumulative distributions of the optimal air leakage locations and sizes (y1, z1 and
L01) for Cases A and B. These figures provide detailed information about the uncertainties associated with the
identified results. When Figs. 5–7 are compared to Figs. 8–10, respectively, it may be concluded again that the
Table 3

Model class selection results of Case A..

Class of models Relative BICk BICk Logarithm of the likelihood factor Logarithm of the penalty

M1 1 2021.06 2032.49 �11.43

M2 3.07� 10�4 2012.97 2032.97 �20.00

Table 4

Model class selection results of Case B..

Class of models Relative BICk BICk Logarithm of the likelihood factor Logarithm of the penalty

M1 1 1628.36 1639.79 �11.43

M2 9.03� 10�4 1621.35 1641.35 �20.00
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Fig. 3. Normalized marginal PDF of the air leakage location (y1 and z1) in Case A.

Fig. 4. Normalized marginal PDF of the air leakage location (y1 and z1) in Case B.
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Fig. 5. Marginal cumulative distribution of the air leakage location (y1) in Case A.
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Fig. 6. Marginal cumulative distribution of the air leakage location (z1) in Case A.
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Fig. 7. Marginal cumulative distribution of the air leakage size (L01) in Case A.
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Fig. 8. Marginal cumulative distribution of the air leakage location (y1) in Case B.
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Fig. 9. Marginal cumulative distribution of the air leakage location (z1) in Case B.
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Fig. 10. Marginal cumulative distribution of the air leakage size (L01) in Case B.
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uncertainties associated with the identified results in Case A are less that those associated with the identified
results in Case B.

The uncertainties can also be quantified by the coefficients of variation (COVs) for all uncertain model
parameters, which are calculated based on the updated PDFs. The calculated COV values are summarized
together with the optimal parameters in Table 9. From the second to the fourth rows of the table, the optimal
air leakage location and the corresponding size are y1 ¼ 0.9198m, z1 ¼ 1.6495m and L1

0

¼ 0.3000m for Case
A, with COV values 0.11%, 0.06% and 0.03%, respectively. For Case B, the results are y1 ¼ 0.9152m,
z1 ¼ 1.6509m and L01 ¼ 0.2998m, with COV values 0.39%, 0.23% and 0.09%, respectively. The identified
damping ratio is shown in the fifth row of the table, and the results are z ¼ 0.01 for both cases, with COV
values 0.21% and 0.77%. The results are very encouraging, as all of the identified results are very close to the
true values. Furthermore, the values of the COV clearly show that modeling error increases the uncertainties
associated with the results of system identification. This conclusion is aligned with the observation from the
normalized marginal PDF (Figs. 3 and 4) and marginal cumulative distribution plots (Figs. 5–10).

3.2. Effects of the measurement noise

Case C is the same as Case B, except that the measurement noise in Case C is 15% (that is, 10% higher than
that in Case B). Because the measured interior sound pressure is not zero, there is at least one leakage in the
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enclosure in Case C. According to the proposed methodology, the next step is to calculate the BIC values for
model classes M1 and M2. Table 5 clearly shows that the relative BIC1 (1) is larger than BIC2 (5.16� 10�4).
Therefore, it can be concluded that there is only one leakage in the enclosure in Case C. Using the proposed
methodology, we successfully identified the true number of air leakages (Nl ¼ 1). By comparing the likelihood
factors of the optimal model class in Cases B and C, it can be concluded that the uncertainties of the identified
results in Case C are higher due to the increase in measurement noise.

Table 9 shows the optimal air leakage location and size, together with the damping ratio. All of the
identified results are very close to the true values. It is clear that the COV values in Case C are larger than
those in Case B. Because Case C has a higher measurement noise than Case B, the increase in the uncertainties
associated with the identified results is expected.

3.3. Effects of the number of air leakages

Cases D and E consider the same measurement noise and modeling error, but the numbers of leakages are
different. Case D has two air leakages, whereas Case E has three. When compared to Case B, Case D has an
additional small air leakage (L02 ¼ 0:25). When compared to Case E, Case D has one less air leakage with size
L02 ¼ 0:2. Because the measured interior sound pressure in both cases is not zero, there is at least one leakage
in each case. The relative BICk for M1 and M2 is then calculated for both examples. Tables 6 and 7 show the
calculated relative BICk values. From Table 6 (Case D), it is clear that the relative BIC2 (1) is larger than BIC1

(1.47� 10�273). According to the algorithm, there must be at least two leakages in Case D. The algorithm
continues to calculate the relative BIC3, which is equal to 1.88� 10�4 (see Table 6). Hence, it can be concluded
that there are only two air leakages (Nl ¼ 2) in Case D. Similarly, Table 7 shows the relative BICk of model
class M1 (8.78� 10�345), M2 (3.27� 10�98), M3 (1) and M4 (2.10� 10�4) in Case E. It is clear from the table
that the relative BIC3 is the largest. Again, the proposed methodology accurately identifies the true number
of leakages.

The optimal model parameters, together with the corresponding COV values in Cases D and E, are
summarized in Table 9. It is clear from the table that all of the identified model parameters are very close to
the simulated values. Table 9 also shows that the COV values in Case D (two leakages) are in general larger
than those in Case B (one leakage). Similarly, the COV values in Case E (three leakages) are in general greater
than those in Case D (two leakages). These results reveal that the uncertainties of system identification will
increase when the number of leakages increases. This can be explained by the fact that the number of uncertain
model parameters increases when the number of leakages increases. For a given set of measurements (constant
amount of information), the larger the number of uncertain parameters, the higher the associated uncertainties
will be [24].

3.4. Effects of the number of measurement stations

Case F is the same as Case E, except that there are only two measurement stations in Case F. The calculated
values of the relative BICk are summarized in Table 8, which shows that the relative BICk increases from M1

to M3 (from 9.95� 10�208 to 1) and decreases from M3 to M4 (from 1 to 7.17� 10�4), demonstrating that the
correct number of air leakages in Case F is three. The optimal air leakage locations and the corresponding
optimal sizes, together with the optimal damping ratio, are summarized in Table 9. All of the identified results
are close to the true values.
Table 5

Model class selection results of Case C..

Class of models Relative BICk BICk Logarithm of the likelihood factor Logarithm of the penalty

M1 1 1567.82 1579.25 �11.43

M2 5.16� 10�4 1560.25 1580.25 �20.00
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Table 6

Model class selection results of Case D..

Class of models Relative BICk BICk Logarithm of the likelihood factor Logarithm of the penalty

M1 1.47� 10�273 1019.26 1030.69 �11.43

M2 1 1647.47 1667.47 �20.00

M3 1.88� 10�4 1638.91 1667.48 �28.57

Table 7

Model class selection results of Case E..

Class of models Relative BICk BICk Logarithm of the likelihood factor Logarithm of the penalty

M1 8.78� 10�345 901.39 912.82 �11.43

M2 3.27� 10�98 1469.14 1489.14 �20.00

M3 1 1693.61 1722.18 �28.57

M4 2.10� 10�4 1685.14 1722.28 �37.14

Table 8

Model class selection results of Case F..

Class of models Relative BICk BICk Logarithm of the likelihood factor Logarithm of the penalty

M1 9.95� 10�208 651.53 662.15 �10.62

M2 3.25� 10�69 970.47 989.04 �18.57

M3 1 1128.17 1154.71 �26.54

M4 7.17�10�4 1120.93 1155.43 �34.50

Table 9

Optimal parameters and the corresponding COV in all cases..

Case Leakage locations and sizes (m) Damping ratio (COV%)

y Location (COV%) z Location (COV%) Size (COV%)

A y1 ¼ 0.9198 (0.11) z1 ¼ 1.6495 (0.06) L01 ¼ 0:3000 ð0:03Þ 0.0100 (0.21)

B y1 ¼ 0.9152 (0.39) z1 ¼ 1.6509 (0.23) L01 ¼ 0:2998 ð0:09Þ 0.0100 (0.77)

C y1 ¼ 0.9162 (0.48) z1 ¼ 1.6499 (0.29) L01 ¼ 0:2998 ð0:11Þ 0.0100 (0.94)

D y1 ¼ 2.3901 (0.42) z1 ¼ 0.7571 (1.46) L01 ¼ 0:2540 ð0:70Þ 0.0101 (0.87)

y2 ¼ 0.8957 (1.00) z2 ¼ 1.6658 (0.43) L02 ¼ 0:2964 ð0:53Þ

E y1 ¼ 2.4416 (0.44) z1 ¼ 0.7597 (5.02) L01 ¼ 0:2513 ð2:58Þ 0.0100 (1.15)

y2 ¼ 0.9163 (0.81) z2 ¼ 1.6396 (0.35) L02 ¼ 0:3000 ð0:43Þ
y3 ¼ 2.5156 (0.82) z3 ¼ 1.9876 (3.06) L03 ¼ 0:1982 ð4:23Þ

F y1 ¼ 2.4635 (0.71) z1 ¼ 0.7489 (5.12) L01 ¼ 0:2492 ð2:63Þ 0.0101 (1.23)

y2 ¼ 0.9121 (1.29) z2 ¼ 1.6321 (0.56) L02 ¼ 0:2996 ð0:61Þ
y3 ¼ 2.4842 (1.31) z3 ¼ 1.9966 (3.44) L03 ¼ 0:2015 ð4:34Þ
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Table 9 also shows the COV values of the identified results. It is clear from the table that the COV values in Case F
are larger than those in Case E. This can be explained by the fact that the amount of information available for system
identification in Case E (three measurement stations) is greater than that in Case F (two measurement stations).
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4. Discussion and conclusions

In this paper, we presented a methodology for the system identification of a rectangular enclosure
with an unknown number of air leakages. The locations and sizes of the air leakages, together with the
damping ratio of the system, are treated as uncertain model parameters. Unlike other model-based
identification techniques in the literature, the proposed methodology is applicable when the number of air
leakages is not given in advance. The proposed methodology relies on the BIC to identify the number of air
leakages, based on a set of measured interior sound pressure in the frequency domain. One outstanding
advantage of the proposed methodology, when compared to other deterministic techniques, is that the
uncertainties associated with the identification results can be quantified through the calculation of the
posterior PDF of model parameters.

The numerical case studies investigate the effects of modeling error, measurement noise, the number of air
leakages and the number of measurement stations in the accuracy of the identification results. The verification
results show that the proposed methodology can successfully identify the simulated air leakages in the
presence of measurement noise and modeling error. As expected, both the modeling error and measurement
noise increase the uncertainty associated with the identified results. The case study also shows that the
uncertainties of system identification will increase when the number of leakages increases. The increase in the
number of measurement stations leads to a reduction in COV of the identified results. That is, the uncertainties
of the identification results are reduced. This is to be expected as an additional measurement station increases
the amount of information for the purpose of system identification. The series of case studies shows that the
Bayesian approach provides a robust measure for quantifying uncertainty.

Although it was assumed in the derivation that the enclosure and the leakages are rectangular, it is possible
to modify the formulations for other shapes of enclosures and leakages. Furthermore, all leakages are assumed
on one of the side walls in the case study, the proposed methodology can easily be extended to cases in which
the leakages are on any of the side walls by considering more model classes.
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Appendix A

This appendix shows the derivation of Eq. (18). By combining Eqs. (14), (15) and (16), the air particle
displacement amplitudes at the i-th air leakage Bi can be represented as

Bi ¼
p2

4ð�mo2 þ joQiÞ

XNf

I¼1

FIbiI � f e

 !
(A.1)

By substituting Eq. (A.1) into (12), the following relation can be obtained
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The result of Eq. (A.2) is then substituted into Eq. (8) and omitting the second term at the right-hand side of
Eq. (8) which is related to the point sound source, the following expression can then be derived
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The Eq. (18) is finally obtained by rearranging Eq. (A.3).
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